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Executive Summary
Fine-tuning pre-trained language models unlocks new levels of accuracy and efficiency for 
enterprise AI applications. By training models on domain-specific data, businesses can enhance 
contextual relevance, reduce token usage, and accelerate response times—delivering AI solutions 
that align more closely with their operational needs.

This approach provides significant advantages over using generic models or training from scratch. 
Fine-tuned models require shorter prompts, which can lower per-query costs depending on the 
use case while improving output quality.

A hybrid strategy combining fine-tuning with retrieval-augmented generation further enhances  
AI performance. By integrating real-time knowledge retrieval with model customization, enterprises 
can reduce hallucinations, refine brand-specific communication, and optimize structured outputs.

However, fine-tuning requires careful execution. High-quality, representative training data is 
essential, and hyperparameter tuning plays a critical role in avoiding overfitting. Best practices 
include starting with smaller models, iterating through experimental phases, and leveraging  
well-structured datasets.

For organizations looking to scale AI capabilities efficiently, fine-tuning presents a powerful 
solution—enabling specialized AI models that drive better business outcomes.
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Pre-trained language models offer a great starting  
point for AI applications, reducing the need for 
extensive training data and computational resources.  
By leveraging these models, businesses can accelerate 
AI adoption while maintaining high performance  
and efficiency.

For example, a travel agency may want its chat 
application to generate responses in a specific format 
and tone that aligns with its brand identity. While a 
generic language model provides relevant answers,  
it may not fully capture the company’s communication 
style. Fine-tuning allows businesses to tailor models  
to their domain, ensuring more accurate and 
contextually relevant outputs.

Compared to training a model from scratch, fine-tuning 
requires significantly less time, data, and compute 
power, making it a scalable and cost-effective approach 
to customizing AI solutions.
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Why fine-tuning matters  
for Enterprises
Fine-tuning refines a pre-trained model by further training on a task-specific or new dataset. It 
leverages the knowledge gained by a model during its initial training on a large, diverse dataset 
and refines it to perform a specific task or improve its performance using a smaller dataset. This 
approach is often more efficient and effective than training a new model from scratch, especially 
for specialized tasks.

Fine-tuning is crucial for meeting customer-specific needs, as it allows organizations to adapt 
pre-trained models to their unique datasets and requirements. This customization enhances 
performance, reduces token costs, and ensures that AI solutions are aligned with business goals.

Key benefits of fine-tuning

Enhanced accuracy and relevance
Fine-tuning improves the model’s performance on particular tasks by training it with  
task-specific data. This often results in more accurate and relevant high-quality outputs  
compared to using general prompts.

Unlike few-shot learning, where only a limited number of examples can be included in a prompt, 
fine-tuning allows you to train the model on an additional dataset. This helps the model learn  
more nuanced patterns and improves task performance.

-

Curated data set
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Efficiency and potential cost savings
Fine-tuned models require shorter prompts because they have already been trained on relevant 
examples. This reduces the number of tokens needed in each request, which can lead to cost 
savings depending on the use case.

Since fine-tuned models need fewer examples in the prompt, they process requests faster, 
resulting in quicker response times.

Scalability and specialization
Fine-tuning leverages the extensive pre-training of language models and hones their capabilities 
for specific applications, making them more efficient and effective for targeted use cases.

Fine-tuning smaller models can achieve performance levels comparable to larger, more expensive 
models for specific tasks. This approach reduces computational costs and increases speed, making 
it a cost-effective scalable solution for deploying Al in resource-constrained environments.

Fine-tuning is a smart investment that 
optimizes model efficiency and can reduce 
operational costs over time. While it requires 
an initial training cost, it can lower per-query 
token usage depending on the use case, 
while also improving accuracy and response 
quality. By tailoring the model to your specific 
needs, you create a faster, potentially more 
cost-effective solution that delivers better 
outcomes while maintaining scalability.

Task-specific optimization
Nuanced learning

Enhanced performance 
and accuracy

Token optimization

Lower latency requests

Efficiency and cost savings

Domain-specific adaptation
lightweight, high-
performance models

Scalability and specialization
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When to fine-tune
Fine-tuning is suited for times when you have a small amount of data and want to improve  
the performance of your model. 

Fine-tuning scenarios

Domain-
specific
applications

When a model 
needs to be adapted 
to a particular 
domain with 
unique language, 
terminology, or  
styles, such as legal, 
medical, financial,  
or scientific text.

Narrow task 
requirements

When a model 
needs to perform 
a very specific task 
that differs from 
the general tasks  
it was initially 
trained on, such 
as for sentiment 
analysis, email 
classification, 
document 
summarization.

Improving 
accuracy with 
new data

If new or updated 
data becomes 
available, fine-
tuning allows  
a model to be 
quickly updated 
without retraining  
it from scratch.

Improving 
efficiency 
on smaller 
datasets

When there isn’t 
enough data to 
train a model 
from scratch, 
fine-tuning on a 
pre-trained model 
can help achieve 
high accuracy 
with limited data, 
saving time and 
computational 
resources.

Low-resource 
languages or 
specialized 
dialects

Improves a model’s 
ability to understand 
and generate  
content in languages 
or dialects that were 
underrepresented 
in its initial training, 
enhancing relevance 
for specific linguistic 
groups.

Fine-tuning can be for different kinds of use cases - but they often fall into broader categories. 

Reducing prompt engineering overhead: Many users begin with few-shot learning, appending 
examples of desired outputs to their system message. Over time, this can lead to increasingly long 
prompts, driving up token counts and latency. Fine tuning lets you embed these examples into the 
model by training on the expected outputs. This is particularly valuable in scenarios with numerous 
edge cases.

Modifying style and tone: Fine-tuning helps align model outputs with a desired style or tone, ensuring 
consistency in applications like customer service chatbots and brand-specific communication.

Generating outputs in specific formats or schemas: Models can be fine-tuned to produce 
outputs in specific formats or schemas, making them ideal for structured data generation, reports, 
or formatted responses.
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Enhancing tool usage: While the chat completions API supports tool calling, listing many tools 
increases token usage and may lead to hallucinations. Fine-tuning with tool examples enhances 
accuracy and consistency, even without full tool definitions.

Enhancing retrieval-based performance: Combining fine-tuning with retrieval methods improves 
a model’s ability to integrate external knowledge, perform complex tasks, and provide more 
accurate, context-aware responses. Fine-tuning trains the model to effectively use retrieved data 
while filtering out irrelevant information.

Optimizing for efficiency:  Fine-tuning can also be used to transfer knowledge from a larger 
model to a smaller one, allowing the smaller model to achieve similar task performance with lower 
cost and latency. For example, production data from a high-performing model can be used to 
fine-tune a smaller, more efficient model. This approach helps scale AI solutions while maintaining 
quality and reducing computational overhead.
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Optimizing models with 
prompt engineering, RAG,  
and fine-tuning
Optimizing generative AI models can be approached in multiple ways, depending on the 
complexity of the task and the level of customization required. The journey typically begins with 
prompt engineering, a straightforward method to refine model outputs without altering the 
underlying model. As needs become more sophisticated, techniques like retrieval-augmented 
generation (RAG) and fine-tuning provide greater control, enabling models to generate more 
accurate, context-aware, and domain-specific responses.

Prompt engineering is a quick and easy way to improve how the model acts, and what the model 
needs to know. It is a technique that involves designing prompts for natural language processing 
models. This process improves accuracy and relevancy in responses, optimizing the performance 
of the model.

When you want to improve the quality of the model even further, there are two common 
techniques that are used:  

•	 RAG improves foundation model performance by retrieving data from external sources and 
incorporating it into a prompt. It allows businesses to achieve customized solutions while 
maintaining data relevance and optimizing costs. RAG is most commonly applied when you 
need the model’s responses to be factual and grounded in specific data. For example, you want 
customers to ask questions about hotels that you’re offering in your travel booking catalog.

•	 Fine-tuning retrains an existing foundation model using example data, resulting in a new 
“custom” model that has been optimized using the provided examples. It is especially useful 
when you want the model to follow a specific style, format, or tone in its responses.
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You should start by evaluating the performance of a base model with prompt engineering and/or 
RAG to get a baseline for performance.

Having a baseline for performance without fine-tuning is essential for knowing whether or not  
fine-tuning has improved model performance. Fine-tuning with bad data makes the base model 
worse, but without a baseline, it’s hard to detect regressions.

You should be able to clearly articulate a specific use case for fine-tuning and identify the model 
you hope to fine-tune. 

You can also use a combination of optimization strategies, like RAG and a fine-tuned model,  
to improve your language application.

Fine-tuning scenarios

Domain-specific
applications

Crafting specialized 
prompts and 
pipelines to guide 
model behavior

Retrieval augmented 
generation (RAG)

Combining an LLM/
SLM with your 
enterprise data

Fine-tuning

Adapting a pre-trained 
Gen AI model to 
specific datasets  
or domains

Pre-training

Training a GenAI 
model from scratch

Accuracy / Complexity / Compute-Intensive
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RAG Fine-tuning

Access to latest 
information

Dynamically retrieves real-time 
data from external sources.

Requires retraining to incorporate  
new information.

Response accuracy 
and performance

Grounded in external documents, 
works well for fact-based or  
knowledge-driven queries.

Excels at context-aware responses, 
specific tasks, and specialized 
workflows.

Computational 
efficiency

Lower training costs, updates 
occur at the retrieval layer.

Higher training costs but 
optimized inference speed.

Latency Can introduce higher response 
time due to retrieval steps.

Faster inference after fine-tuning,  
as no external retrieval is needed.

Cost 
considerations

Lower costs upfront, but  
retrieval API costs may increase 
with usage.

Higher initial investment but  
lower long-term costs for 
repetitive tasks.

Hallucination risk Reduces hallucinations by 
retrieving factual data.

Can still hallucinate if fine-tuned  
on incomplete or biased data.

    
 

You are ready for fine-tuning if...
You have experience with Prompt Engineering and RAG approaches.

You can share specific challenges and lessons learned from alternative techniques that  
were attempted before fine-tuning.

You have conducted quantitative assessments of baseline performance, where possible.  
You have clear examples of previous optimization attempts, detailing what was tested  
and how performance was measured. 

•	 You have identified limitations of the base model, such as: 

•	 Inconsistent performance on edge cases

•	 Insufficient context window for few-shot learning

•	 High latency impacting real-time use cases
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Hybrid approach with RAG and fine-tuning
The hybrid approach of using RAG and fine-tuning together, often referred to as retrieval 
augmented fine-tuning (RAFT), combines the strengths of both techniques to enhance the 
performance of LLMs.

Why adopt a hybrid approach
Combining RAG and fine-tuning, offer a powerful synergy that addresses the limitations of 
individual techniques. This involves fine-tuning a model with specific data to create a foundation of 
high accuracy, which can then be supplemented with RAG’s up-to-date information retrieval. The 
result is highly accurate, relevant, and context-aware outputs.

Integrating RAG with fine-tuning creates a model that leverages both real-time knowledge retrieval 
and deep customization, offering:

Improved accuracy and relevance – Fine-tuning personalizes responses, while RAG ensures the AI 
accesses the latest information.

Reduced hallucinations – RAG reduces model-generated misinformation by grounding responses 
in real-world data.

Lower computational costs – Instead of retraining a model frequently, businesses can use RAG to 
inject fresh knowledge dynamically.

Better compliance and control – Fine-tuning refines model behavior, while RAG allows retrieval 
from vetted, enterprise-approved data sources.

When to use a hybrid approach
A study explored the trade-offs between RAG and fine-tuning for incorporating proprietary and 
domain-specific data into LLMs. Researchers developed a pipeline that extracted information from 
PDFs, generated question-answer pairs for fine-tuning, and evaluated performance using GPT-4.

Their findings on an agricultural dataset demonstrated how RAG and fine-tuning can complement 
each other. Fine-tuning improved accuracy by over 6 percentage points (p.p.), while RAG provided 
an additional 5 p.p. increase by dynamically retrieving relevant knowledge. In a specific experiment, 
the fine-tuned model improved answer similarity from 47% to 72%, leveraging knowledge across 
different geographic locations.
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This study highlights that fine-tuning excels at embedding structured domain expertise into 
the model, while RAG enhances adaptability by incorporating real-time, external knowledge. 
Businesses can strategically combine both approaches to maximize accuracy, efficiency, and 
relevance based on their industry needs.

Here’s another example:

A customer wants an LLM model to turn natural language questions into queries in a 
specific, nonstandard query language. The customer provides guidance in the prompt 
(“Always return GQL”) and uses RAG to retrieve the database schema. However, the syntax 
isn’t always correct and often fails for edge cases. The customer collects thousands of 
examples of natural language questions and the equivalent queries for the database, 
including cases where the model failed before. The customer then uses that data to  
fine-tune the model. Combining the newly fine-tuned model with the engineered prompt 
and retrieval brings the accuracy of the model outputs up to acceptable standards for use.
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The fine-tuning journey
Before you start with fine-tuning

When starting out on your generative AI journey, we recommend you begin with prompt 
engineering and RAG to familiarize yourself with base models and its capabilities.

As you get comfortable and begin building your solution, it’s important to understand where 
prompt engineering may fall short and that will help you realize if you should try fine-tuning.

•	 Is the base model failing on edge cases or exceptions?

•	 Is the base model inconsistent in producing outputs in the desired format?

•	 Is it difficult to fit enough examples in the context window to steer the model?

•	 Is the model’s latency too high for your performance requirements?

•	 Is the base model becoming too expensive or inefficient due to long, complex prompts?

Examples of failure with the base model and prompt engineering can help you identify the data to 
collect for fine-tuning and establish a performance baseline that you can evaluate and compare 
your fine-tuned model against. Having a baseline for performance without fine-tuning is 
essential for knowing whether or not fine-tuning improves model performance.
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Executing your fine-tuning project
At a high level, fine tuning requires you to:

(1) Prepare and upload training data,

(2) Train a new fine-tuned model,

(3) Evaluate your newly trained model,

(4) Deploy that model for inferencing, and

(5) Use the fine-tuned model in your application

It’s important to call out that fine-tuning is heavily dependent on the quality of data that you 
can provide. It’s best practice to provide hundreds, if not thousands, of training examples to be 
successful and get your desired results.

Pipeline for fine-tuning

Data collection and
Curation
Data cleaning and QA
Data augmentation
Data splitting

1

Data preparation
Choose pre-trained 
model
Load pre-trained 
model weights

2

Model initialisation
Configure training 
environment
Defining 
hyperparameters
Initialize optimizers 
and loss function

3

Training setup
Techniques–SFT,  
RFT, DPO
Parameter efficient  
fine-tuning
Task specific finetuning
Domain specific 
finetuning

4

Fine-tuning

Evaluation metrics
Understanding loss curve  
and noisy gradients
Hyperparameter tuning
Preventing overfitting

5

Validation and evaluation
Deployment strategies
Optimization for inference
Exporting finetuned model

6

Deployment
Continuous monitoring
Periodic retraining and update

7

Monitoring
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Data preparation

What data are you going to use for fine-tuning?
The fine-tuning process begins by selecting a pretrained model and preparing a relevant  
dataset tailored to the target task. This dataset should reflect the kind of inputs the model will  
see in deployment.

For example, if the goal is to fine-tune a model for sentiment analysis, the dataset would include 
labeled text examples categorized by sentiment (positive, negative, neutral).

The model is then retrained on this dataset, adjusting its parameters to better align with the new 
task. This retraining process usually requires fewer computational resources compared to training  
a model from scratch, as it builds upon the existing capabilities.

Even with a great use case, fine-tuning is only as good as the quality of the data that you’re able  
to provide. Different models will require different data volumes, but you often need to provide 
fairly large quantities of high-quality curated data. Another important point is even with high 
quality data if your data isn’t in the necessary format for fine-tuning, you’ll need to commit 
engineering resources in order to properly format the data.

 
You are ready for fine-tuning if...
You have identified relevant datasets for fine-tuning.

You have formatted the dataset appropriately for training.

You have curated the dataset to ensure high quality.
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To fine-tune a model for chat or question answering, your training dataset should reflect  
the types of interactions the model will handle.  
Here are some key elements to include in your dataset:

•	 Prompts and responses: Each entry should contain a prompt (e.g., a user question) and a 
corresponding response (e.g., the model’s reply).

•	 Contextual information: For multi-turn conversations, include previous exchanges to help the 
model understand context and maintain coherence.

•	 Diverse examples: Cover a range of topics and scenarios to improve generalization and robustness.
•	 Human-generated responses: Use responses written by humans to teach the model how to 

generate natural and accurate replies.
•	 Formatting: Use a clear structure to separate prompts and responses. For example, \n\n###\

n\n and ensure the delimiter doesn’t appear in the content.

Best Practices for data preparation
The more training examples you have, the better. Fine tuning jobs will not proceed without at 
least 10 training examples, but such a small number isn’t enough to noticeably influence model 
responses. It is best practice to provide hundreds, if not thousands, of training examples to be 
successful. 100 good-quality examples are better than 1000 poor examples.

In general, doubling the dataset size can lead to a linear increase in model quality. But keep in mind, 
low quality examples can negatively impact performance. If you train the model on a large amount 
of internal data, without first pruning the dataset for only the highest quality examples you could 
end up with a model that performs much worse than expected.

Best practices for data labelling
Accurate and consistent labelling is crucial for training the model. Follow these best practices:

•	 Ensure data diversity: Include all the typical variations such as document formats (digital vs. 
scanned), layout differences, varying table sizes, and optional fields.

•	 Define fields clearly: Use semantically meaningful field names (e.g., effective_date), especially 
for custom models, and follow consistent naming conventions like Pascal or camel case.

•	 Maintain label consistency: Ensure uniform labeling across documents, particularly for 
repeated values.

•	 Split your data: Separate training and validation sets to evaluate the model on unseen data and 
avoid overfitting.

•	 Label at scale: Aim for at least 50 labeled documents per class, where applicable. 
•	 Combine automation and review: Use AI-generated labels to accelerate the process, focusing 

manual effort on complex or critical fields.
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Model selection

Selecting the right model for fine-tuning is a critical decision that impacts performance, 
efficiency, and cost. Before making a choice, it is essential to clearly define the task and 
establish the desired performance metrics. A well-defined task ensures that the selected 
model aligns with specific requirements, optimizing effort and resources.

Best practices for model selection
Choose models based on domain specificity and use case. 
Start by evaluating industry-standard models for general capabilities, then assess models fine-
tuned for your specific use case. If your task requires deep domain expertise, selecting a model 
tailored to your industry can improve accuracy and efficiency while reducing the need for 
extensive fine-tuning.

Assess model performance on leaderboards
Review benchmark leaderboards to evaluate how pre-trained models perform on relevant tasks. 
Focus on key metrics such as accuracy, coherence, latency, and domain-specific benchmarks to 
identify a strong foundation for fine-tuning.

Experiment with model playgrounds
Utilize interactive testing environments to assess the base model’s performance on real-world use 
cases. By adjusting prompts, temperature, and other parameters, you can identify performance 
gaps before investing in fine-tuning.

Weigh trade-offs between model size, complexity, cost, and performance
Larger models may offer superior accuracy but come with higher computational costs and latency. 
Consider the balance between efficiency and precision based on your deployment needs.

Training and evaluation
Fine-tuning isn’t merely a matter of retraining on a new dataset; it also involves careful 
consideration of various hyperparameters and techniques to balance accuracy and generalization. 
A key risk is overfitting, where a model becomes too narrowly adapted to training data, reducing 
its effectiveness on unseen inputs. To mitigate overfitting and optimize performance, fine-tuning 
requires adjusting parameters such as learning rate, regularization, batch size, number of epochs, 
and seed settings.
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Best practices for training

•	 Experiment with different hyperparameters to improve model performance.

•	 Consider freezing early layers responsible for general language understanding and fine-tune 
only the later, task-specific layers. This preserves foundational knowledge while enabling 
domain-specific adaptation.

•	 Align training data with real-world usage patterns. For example, if 90% of queries are about 
Question A, mirror that ratio in your dataset to optimize for high-frequency scenarios while still 
covering edge cases.

•	 Establish clear training goals and evaluation metrics to monitor fine-tuning effectiveness.

Use evaluations in fine-tuning

You should have clearly defined goals for what success with fine-tuning looks like. Ideally, these 
should go beyond qualitative measures and include quantitative metrics, such as using a holdout 
validation set, conducting user acceptance testing, or A/B tests comparing the fine-tuned model 
to the base model.

Model training can be guided by metrics. For example, BLEU-4 was used to evaluate training when 
fine-tuning a model to generate chest X-Ray reports, as seen in this paper.

Identify failure areas

Error analysis

Hyperparameter tuning Adjust data size

Model size trade-offs

Compare accuracy vs. cost

BLEU-4

Adjust epochs, learning rate, etc. BLEU changes with data/training time.

Use intermediate checkpoints for better model selection. Save checkpoints at regular intervals 
(e.g., every few epochs) and evaluate their performance. In some cases, an intermediate checkpoint 
may outperform the final model, allowing you to select the best version rather than relying solely 
on the last trained iteration.
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Deployment and monitoring

•	 Choose a suitable deployment infrastructure, such as cloud-based platforms or  
on-premises servers.

•	 Continuously monitor the model’s performance and make necessary adjustments  
to ensure optimal performance.

•	 Consider regional deployment needs and latency requirements to meet enterprise SLAs. 
Implement security guardrails, such as private links, encryption, and access controls, to  
protect sensitive data and maintain compliance with organizational policies.
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Use cases
Turning natural language into a query language is just one use-case where you can ‘show not tell’ the 
model how to behave. Custom model can be built for a wide range of business use cases, including: 

 

The following industry use cases illustrate how fine-tuned AI models can address domain-specific 
challenges, enhance operational efficiency, and deliver tailored value across sectors.

Business use cases

Generate personalized 
responses to customer 
inquiries by leveraging 
relevant product 
information, customer 
history, and external 
knowledge bases.
By quickly identifying 
root causes and 
providing accurate 
solutions, hybrid models 
can enhance customer 
satisfaction and reduce 
resolution time.

Customer  
service

Generate high-quality 
content, such as 
product descriptions, 
marketing copy, and 
social media posts, 
by combining factual 
information with 
creative writing skills.
By ensuring alignment 
with brand guidelines, 
hybrid models help 
maintain consistent 
brand voice and 
messaging.

Content 
generation

Generate accurate and 
concise summaries of 
long documents by 
leveraging external 
knowledge bases and 
fine-tuned language 
models.
Hybrid models can 
extract key information, 
making it easier for 
users to quickly find 
what they need.

Document 
summarization

Help users find relevant 
information from large 
knowledge bases by 
understanding their 
queries and retrieving 
the most relevant 
documents.
Hybrid models can 
also be used to create 
knowledge graphs that 
visualize and analyze 
complex information.

Knowledge 
management

Healthcare and life sciences Finance

Legal services Agriculture

Diagnostic Support
Customize AI models using proprietary medical 
research, clinical guidelines, and patient data.
Clinical Documentation
Fine-tune AI for medical transcription, documentation 
automation, and physician assistance.

Personalized Advisory
Automate financial insights by tailoring 
recommendations based on historical and real-time data.
Strategic Alignment
Ensure AI-driven investment analysis adheres to internal 
strategies and risk policies

Crop Health Monitoring
Fine-tune models to analyze leaf images and sensor data 
to detect diseases and recommend targeted treatments.
Farmer Advisory Support
Fine-tune AI assistants to provide tailored guidance on 
best practices, government policies, and market trends, 
with support for multiple languages and dialects

Contract Intelligence
Fine-tune AI models to generate contract summaries, 
legal briefings, and compliance documents with strict 
adherence to legal language.
Content Consistency
Maintain brand voice across marketing, corporate 
communications, and technical documentation
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Fine-tuning techniques
Supervised fine-tuning
Supervised fine tuning allows you to provide custom data (prompt/completion or conversational 
chat, depending on the model) to teach the base model new skills. This process involves further 
training the model on a high-quality labelled dataset, where each data point is associated with the 
correct output or answer. The goal is to enhance the model’s performance on a particular task by 
adjusting its parameters based on the labelled data.

Reinforcement fine-tuning 
Reinforcement fine-tuning is a model customization technique, particularly beneficial for 
optimizing model behavior in highly complex or dynamic environments, enabling the model to 
learn and adapt through iterative feedback and decision-making.

For example, financial services providers can optimize the model for faster, more accurate risk 
assessments or personalized investment advice. In healthcare and pharmaceuticals, o3-mini can be 
tailored to accelerate drug discovery, enabling more efficient data analysis, hypothesis generation, 
and identification of promising compounds.

Reinforcement fine-tuning 

Supervised fine-tuning 

Reinforcement fine-tuning 

SFT Epochs SFT Epochs SFT Epochs

Base model

Question

Reinforcement learning

Fine-tuning model

Final policy

Golden reward

On policy 
sampling
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Direct preference optimization
Direct Preference Optimization (DPO) is another new alignment technique for large language 
models, designed to adjust model weights based on human preferences. Unlike Reinforcement 
Learning from Human Feedback (RLHF), DPO does not require fitting a reward model and uses 
binary preferences for training. This method is computationally lighter and faster, making it equally 
effective at alignment while being more efficient. DPO is especially useful in scenarios where 
subjective elements like tone, style, or specific content preferences are important.

Why is DPO useful?
DPO is especially useful in scenarios where there’s no clear-cut correct answer, and subjective 
elements like tone, style, or specific content preferences are important. This approach also enables 
the model to learn from both positive examples (what’s considered correct or ideal) and negative 
examples (what’s less desired or incorrect), often leveraging “thumbs up” and “thumbs down” 
feedback data to refine responses based on user preferences.

DPO is believed to be a technique that will make it easier for customers to generate high-quality 
training data sets. While many customers struggle to generate sufficient large data sets for 
supervised fine-tuning, they often have preference data already collected based on user logs, A/B 
tests, or smaller manual annotation efforts.

Overall, DPO offers a streamlined, stable, and efficient alternative to traditional methods, making 
it a promising approach for fine-tuning language models to better align with human expectations 
and values.

Stability Efficiency Bias mitigation

DPO eliminates the need  
for a separate reward 
model, which is required  
in traditional methods  
like RLHF.

This simplification reduces 
the complexity of the 
optimization process

By directly optimizing  
the policy based on  
human preferences, DPO 
avoids the instability  
often associated with 
training and maintaining 
multiple models.

This leads to more 
consistent and  
reliable outcomes

DPO directly incorporates 
human preferences into 
the optimization process, 
which helps in reducing 
unintended biases in the 
model’s behavior.

This alignment with 
human values ensures 
that the model’s  
outputs are more 
desirable and ethical.

DPO is computationally 
efficient as it does not 
require the extensive 
computational resources 
needed for RLHF.

This efficiency allows  
for faster convergence 
and lower computational 
overhead

Simplicity

Why is direct preference optimization useful?
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Model optimization using distillation
Model distillation empowers developers to use the outputs of large, complex models to fine-tune 
smaller, more efficient ones. This technique allows the smaller models to perform just as well on 
specific tasks, all while significantly cutting down on both cost and latency.

Distillation refers to the process of using a large, general purpose teacher model to train a smaller 
student model to perform well at a specific task. 

Distillation is of particular interest for several reasons: 

•	 reduce the costs and latency
•	 improve performance.
•	 operate in resource-constrained environments

Let’s work together on a distillation user scenario: distilling from production for a news 
sentiment use case. 

Imagine a company using an AI-powered platform to monitor news in real-time, tracking sentiment 
around its brand, products, and industry trends. Behind the scenes, the large model is analyzing 
news articles to detect positive, negative, or neutral sentiment.

As the number of news sources and updates grows, so do the platform’s operating costs and with 
each new data source, processing times begin to slow. Now, imagine if the platform could maintain 
this large model’s intelligence and accuracy while reducing both costs and response times.

Model distillation to the rescue! We capture model’s real-time interactions with news articles, 
building a rich dataset of responses. With this data, we can distil large model’s power into a smaller, 
faster model that delivers high-quality answers at a fraction of the cost.
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Challenges and limitations of fine-tuning
Fine-tuning large language models scan be a powerful technique to adapt them to specific 
domains and tasks. However, fine-tuning also comes with some challenges and disadvantages 
that need to be considered before applying it to a real-world problem. Below are a few of these 
challenges and disadvantages.

•	 Fine-tuning requires high-quality, sufficiently large, and representative training data matching 
the target domain and task. Quality data is relevant, accurate, consistent, and diverse enough 
to cover the possible scenarios and variations the model will encounter in the real world. Poor-
quality or unrepresentative data leads to over-fitting, under-fitting, or bias in the fine-tuned 
model, which harms its generalization and robustness.

•	 Fine-tuning large language models means extra costs associated with training and hosting the 
custom model.

•	 Formatting input/output pairs used to fine-tune a large language model can be crucial to its 
performance and usability.

•	 Fine-tuning may need to be repeated whenever the data is updated, or when an updated base 
model is released. This involves monitoring and updating regularly.

•	 Fine-tuning is a repetitive task (trial and error) so, the hyperparameters need to be carefully 
set. Fine-tuning requires much experimentation and testing to find the best combination of 
hyperparameters and settings to achieve desired performance and quality.
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Enhancing expertise with fine-tuning at Bayer  
Bayer leveraged fine-tuning to enhance the accuracy and efficiency of its agronomy-focused 
AI assistant, E.L.Y. Initially, Bayer implemented RAG on GPT-3.5 to improve responses related to 
Bayer’s commercial agricultural products, achieving a 42% improvement in accuracy. However, as 
usage scaled, challenges emerged—slower response times, higher costs, and limited scalability. 
To address this, Bayer collaborated with Microsoft to fine-tune a specialized model, focusing on 
crop protection label understanding. The fine-tuning process involved continual pre-training, 
supervised fine-tuning, and direct preference optimization, supported by real-world prompt 
templates, training sets, and proprietary QA benchmarks. By integrating domain expertise and 
optimizing model adaptation, Bayer significantly improved response precision, reduced latency, 
and ensured the model could handle complex agronomic queries, including unit conversions and 
application rates, ultimately delivering a faster, and effective solution.

The ability to fine-tune a foundational model in a cost-efficient manner provided tremendous gains

Improved understanding of Crop 
Protection labels
Proficiency in Ag-lingo
Improved regional understanding
Improved product understanding

Accuracy Performance

Reduced latency, faster  
response time
Access in low-no connectivity 
environments
Ability to fine-tune vs RAG only

Cost

Ability to train models  
more rapidly
Ability to refresh models at  
lower costs
Ability to fine tune and not  
just RAG
Reduced response time 

So how did Bayer work with Microsoft to evolve E.L.Y. and focus this model on crop protection…

Crop protection labels

Crop protection SME 
benchmark

Phi-3 : Fine-tuning for Bayer Crop protection labels

Document ingestion
Doc intelligence parser
AI search index
Table summarization

QnA generation
QA gen (with CoT)
QA quality eval
MCQ generation
RAFT
Train-eval split

Model adaptation

Continual pre-training
Supervised fine-tuning
Direct preference 
optimization
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Best practices for fine-tuning
Here are some best practices that can help improve the efficiency and effectiveness of fine-
tuning LLMs for various applications:

Try different data formats: Depending on the task, different data formats can have different 
impacts on the model’s performance. For example, for a classification task, you can use a 
format that separates the prompt and the completion with a special token, such as {“prompt”: 
“Paris##\n”, “completion”: “ city\n###\n”}. Be sure to use formats suitable for your application.

Collect a large, high-quality dataset: LLMs are data-hungry and can benefit from having 
more diverse and representative data to fine-tune on. However, collecting and annotating 
large datasets can be costly and time-consuming. Therefore, you can also use synthetic data 
generation techniques to increase the size and variety of your dataset. However, you should 
also ensure that the synthetic data is relevant and consistent with your task and domain. Also 
ensure that it does not introduce noise or bias to the model.

Try fine-tuning subsets first: To assess the value of getting more data, you can fine-tune 
models on subsets of your current dataset to see how performance scales with dataset size. 
This fine-tuning can help you estimate the learning curve of your model and decide whether 
adding more data is worth the effort and cost. You can also compare the performance of 
your model with the pre-trained model or a baseline. This comparison shows how much 
improvement you can achieve with fine-tuning.

Experiment with hyperparameters: Iteratively adjust hyperparameters to optimize the 
model performance. Hyperparameters, such as the learning rate, the batch size and the 
number of epochs, can have significant effect on the model’s performance. Therefore, you 
should experiment with different values and combinations of hyperparameters to find the 
best ones for your task and dataset.

Start with a smaller model: A common mistake is assuming that your application needs 
the newest, biggest, most expensive model. Especially for simpler tasks, start with smaller 
models and only try larger models if needed.

Select models based on domain needs: Start with industry-standard models before 
considering fine-tuned versions for specific use cases. Use benchmark leaderboards 
to assess performance and test real-world scenarios in model playgrounds. Balance 
accuracy, cost, and efficiency to ensure the best fit for your deployment
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Fine-tuning with 
Microsoft Foundry
As enterprises increasingly adopt generative AI for domain-specific tasks, the ability to tailor 
foundational models to unique datasets becomes critical. Foundry enables organizations to fine-
tune large language and multimodal models with precision, scalability, and enterprise-grade security, 
bridging the gap between general-purpose AI and specialized business needs.

Foundry supports the fine-tuning of variety of pre-trained models, including Azure OpenAI 
models, lightweight Phi family and third-party models, offering flexibility across use cases.  
It provides a streamlined fine-tuning workflow that can be executed with minimal configuration.

Types of fine-tuning
Foundry supports a range of fine-tuning   methods: supervised fine tuning (SFT),  
direct preference optimization (DPO) and Reinforcement Fine-tuning (RFT).

Supervised Fine-tuning trains a model using prompt-response pairs, demonstrating the desired 
way it should respond to specific inputs. This method helps customize the model to align with  
your unique use case. Foundry offers SFT for third-party models as well, enabling greater flexibility  
in customizing models to specific business needs.

Preference Fine-uning goes a step further by optimizing the model based on human preferences.  
By training with ranked response examples, DPO helps refine outputs to better match  
user expectations.

Reinforcement Fine-tuning enables customization of models using dozens to thousands  
of high-quality tasks. By grading the model’s responses with provided reference answers,  
this technique reinforces how the model reasons through similar problems and improves  
its accuracy on specific tasks in that domain.

These techniques can be combined for greater customization. Start with SFT to build a model 
tailored to your tasks, ensuring high-quality and representative data. Then, apply DPO to  
fine-tune responses through comparative adjustments, aligning them even more closely with  
user preferences.
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Model Distillation in Foundry

Foundry provides support for distillation, allowing you to efficiently train student models.

The key steps in knowledge distillation include:

1.	 Use the pretrained teacher model to produce outputs (soft labels or logits) for the original dataset.

2.	 Leverage the teacher’s predictions, alongside the original dataset, to guide the student model in 
learning to replicate the teacher’s behavior more efficiently.

Model distillation is supported for both Azure OpenAI Service models and select open source third 
party models available in the model catalog.

Azure OpenAI Service enables efficient model distillation by leveraging Stored Completions, 
Evaluation, and Fine-Tuning to optimize models for specific use cases. 

With Stored Completions, users can capture input-output pairs from models like GPT-4o, creating 
high-quality datasets based on real production data. These datasets can then be used for both 
evaluation and fine-tuning. 

Azure OpenAI Evaluation provides a streamlined framework to assess model performance, utilizing 
Stored Completions or existing datasets to measure effectiveness across specific tasks.

Distillation

2. Model generated 

I. Real traffic 

Collect live traffic Fine-tuning 

Production model 
(Teacher model) 

Captured data Smaller model 
(Student model) 

Distilled model 

Larger model 
(Teacher model) 

Smaller model 
(Student model) 

Distilled model 

Fine-tuning Fine-tuning 

Synthetic data Seed
Knowledge
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Finally, these insights seamlessly integrate into the fine-tuning process, ensuring that models are 
continuously refined and optimized based on real-world usage, improving accuracy, efficiency, and 
task-specific performance.

Continual fine-tuning
Update a fine-tuned model with new data or continue from where you left off. Keep most 
parameters the same, but consider reducing the learning rate.

Vision fine-tuning
Fine-tuning GPT-4o with vision capabilities is streamlined, allowing training with diverse image data, 
including graphs and charts. The input format remains consistent as JSONL, ensuring seamless 
integration. Additionally, there is no charge for rejected jobs, with helpful guidance provided on 
how to resolve issues for successful training.

Azure ensures responsible AI practices by automatically filtering out faces, captchas, and abusive 
content from training datasets, preventing these data rows from being used in model training.

Built in safety
Azure provides strong defences through Prompt Shields, jailbreak risk detection, and 
comprehensive safety evaluations. Automatic safety assessments include sampling training data 
for harmful content and running simulated adversarial conversations with fine-tuned models. 
Ensuring privacy and security, evaluations are conducted in dedicated, customer-specific private 
workspaces, with endpoints located in the same geography as the Azure resource.

Fine-tuning remains a critical capability for adapting foundation models to domain-specific tasks, 
enhancing accuracy, and reducing latency in production scenarios. By applying best practices, 
such as selecting the appropriate fine-tuning method, leveraging high-quality domain data, and 
using evaluation loops to validate performance, organizations can accelerate time to value while 
maintaining model integrity.

Foundry simplifies this process through an integrated platform that offers support for multiple 
fine-tuning techniques, seamless access to Microsoft and open-source models, and built-in tools for 
model monitoring, deployment, and governance. Together, these features enable enterprise teams 
to efficiently operationalize AI while aligning with strategic business goals.

Begin your journey with Foundry
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