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Executive Summary

Fine-tuning pre-trained language models unlocks new levels of accuracy and efficiency for
enterprise Al applications. By training models on domain-specific data, businesses can enhance
contextual relevance, reduce token usage, and accelerate response times—delivering Al solutions
that align more closely with their operational needs.

This approach provides significant advantages over using generic models or training from scratch.
Fine-tuned models require shorter prompts, which can lower per-query costs depending on the
use case while improving output quality.

A hybrid strategy combining fine-tuning with retrieval-augmented generation further enhances
Al performance. By integrating real-time knowledge retrieval with model customization, enterprises
can reduce hallucinations, refine brand-specific communication, and optimize structured outputs.

However, fine-tuning requires careful execution. High-quality, representative training data is
essential, and hyperparameter tuning plays a critical role in avoiding overfitting. Best practices
include starting with smaller models, iterating through experimental phases, and leveraging
well-structured datasets.

For organizations looking to scale Al capabilities efficiently, fine-tuning presents a powerful
solution—enabling specialized Al models that drive better business outcomes.




~
Pre-trained language models offer a great starting g
point for Al applications, reducing the need for
extensive training data and computational resources.
By leveraging these models, businesses can accelerate
Al adoption while maintaining high performance

and efficiency.

For example, a travel agency may want its chat
application to generate responses in a specific format
and tone that aligns with its brand identity. While a
generic language model provides relevant answers,

it may not fully capture the company’s communication
style. Fine-tuning allows businesses to tailor models
to their domain, ensuring more accurate and
contextually relevant outputs.

Compared to training a model from scratch, fine-tuning
requires significantly less time, data, and compute

power, making it a scalable and cost-effective approach
to customizing Al solutions.
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Why fine-tuning matters
for Enterprises

Fine-tuning refines a pre-trained model by further training on a task-specific or new dataset. It
leverages the knowledge gained by a model during its initial training on a large, diverse dataset
and refines it to perform a specific task or improve its performance using a smaller dataset. This
approach is often more efficient and effective than training a new model from scratch, especially
for specialized tasks.

Fine-tuning is crucial for meeting customer-specific needs, as it allows organizations to adapt
pre-trained models to their unique datasets and requirements. This customization enhances
performance, reduces token costs, and ensures that Al solutions are aligned with business goals.

Curated data set

-

Key benefits of fine-tuning

Enhanced accuracy and relevance

Fine-tuning improves the model’'s performance on particular tasks by training it with
task-specific data. This often results in more accurate and relevant high-quality outputs
compared to using general prompts.

Unlike few-shot learning, where only a limited number of examples can be included in a prompt,
fine-tuning allows you to train the model on an additional dataset. This helps the model learn
more nuanced patterns and improves task performance.
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Efficiency and potential cost savings

Fine-tuned models require shorter prompts because they have already been trained on relevant
examples. This reduces the number of tokens needed in each request, which can lead to cost
savings depending on the use case.

Since fine-tuned models need fewer examples in the prompt, they process requests faster,
resulting in quicker response times.

Scalability and specialization

Fine-tuning leverages the extensive pre-training of language models and hones their capabilities
for specific applications, making them more efficient and effective for targeted use cases.

Fine-tuning smaller models can achieve performance levels comparable to larger, more expensive
models for specific tasks. This approach reduces computational costs and increases speed, making
it a cost-effective scalable solution for deploying Al in resource-constrained environments.

4 )
Enhanced performance . . e
cost savings J Scalability and specialization
and accuracy
Task-specific optimization Token optimization Domain-specific adaptation
. lightweight, high-

Nuanced learning Lower latency requests performance models

- J

Fine-tuning is a smart investment that
optimizes model efficiency and can reduce
operational costs over time. While it requires
an initial training cost, it can lower per-query
token usage depending on the use case,

while also improving accuracy and response
quality. By tailoring the model to your specific
needs, you create a faster, potentially more
cost-effective solution that delivers better
outcomes while maintaining scalability.
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When to fine-tune

Fine-tuning is suited for times when you have a small amount of data and want to improve
the performance of your model.

Fine-tuning scenarios
s ~

%)
Domain-
specific
applications

When a model
needs to be adapted
to a particular
domain with

unique language,
terminology, or
styles, such as legal,
medical, financial,
or scientific text.

N\

®)

Narrow task
requirements

When a model
needs to perform
a very specific task
that differs from
the general tasks
it was initially
trained on, such
as for sentiment
analysis, email
classification,
document
summarization.

R

Improving
accuracy with
new data

If new or updated
data becomes
available, fine-
tuning allows

a model to be
quickly updated
without retraining
it from scratch.

Improving
efficiency

on smaller
datasets

When there isn't
enough data to
train a model
from scratch,
fine-tuning on a
pre-trained model
can help achieve
high accuracy
with limited data,
saving time and
computational
resources.

%,

Low-resource
languages or
specialized
dialects

Improves a model’s
ability to understand
and generate
content in languages
or dialects that were
underrepresented

in its initial training,
enhancing relevance
for specific linguistic
groups.

J

Fine-tuning can be for different kinds of use cases - but they often fall into broader categories.

Reducing prompt engineering overhead: Many users begin with few-shot learning, appending
examples of desired outputs to their system message. Over time, this can lead to increasingly long
prompts, driving up token counts and latency. Fine tuning lets you embed these examples into the
model by training on the expected outputs. This is particularly valuable in scenarios with numerous
edge cases.

Modifying style and tone: Fine-tuning helps align model outputs with a desired style or tone, ensuring
consistency in applications like customer service chatbots and brand-specific communication.

Generating outputs in specific formats or schemas: Models can be fine-tuned to produce
outputs in specific formats or schemas, making them ideal for structured data generation, reports,
or formatted responses.
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Enhancing tool usage: While the chat completions API supports tool calling, listing many tools
increases token usage and may lead to hallucinations. Fine-tuning with tool examples enhances
accuracy and consistency, even without full tool definitions.

Enhancing retrieval-based performance: Combining fine-tuning with retrieval methods improves
a model’s ability to integrate external knowledge, perform complex tasks, and provide more
accurate, context-aware responses. Fine-tuning trains the model to effectively use retrieved data
while filtering out irrelevant information.

Optimizing for efficiency: Fine-tuning can also be used to transfer knowledge from a larger
model to a smaller one, allowing the smaller model to achieve similar task performance with lower
cost and latency. For example, production data from a high-performing model can be used to
fine-tune a smaller, more efficient model. This approach helps scale Al solutions while maintaining
quality and reducing computational overhead.
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Optimizing models with
prompt engineering, RAG,
and fine-tuning

Optimizing generative Al models can be approached in multiple ways, depending on the
complexity of the task and the level of customization required. The journey typically begins with
prompt engineering, a straightforward method to refine model outputs without altering the
underlying model. As needs become more sophisticated, techniques like retrieval-augmented
generation (RAG) and fine-tuning provide greater control, enabling models to generate more
accurate, context-aware, and domain-specific responses.

Prompt engineering is a quick and easy way to improve how the model acts, and what the model
needs to know. It is a technique that involves designing prompts for natural language processing
models. This process improves accuracy and relevancy in responses, optimizing the performance
of the model.

When you want to improve the quality of the model even further, there are two common
techniques that are used:

« RAG improves foundation model performance by retrieving data from external sources and
incorporating it into a prompt. It allows businesses to achieve customized solutions while
maintaining data relevance and optimizing costs. RAG is most commonly applied when you
need the model’s responses to be factual and grounded in specific data. For example, you want
customers to ask questions about hotels that you're offering in your travel booking catalog.

« Fine-tuning retrains an existing foundation model using example data, resulting in a new
“custom” model that has been optimized using the provided examples. It is especially useful
when you want the model to follow a specific style, format, or tone in its responses.
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Fine-tuning scenarios
~ 9 ™
Domain-specific Retrieval augmented Fine-tuning Pre-training
applications generation (RAG)

Crafting specialized Combining an LLM/ Adapting a pre-trained Training a GenAl
prompts and SLM with your Gen Al model to model from scratch
pipelines to guide enterprise data specific datasets

model behavior or domains

N\ 4

Accuracy / Complexity / Compute-Intensive

N J

You should start by evaluating the performance of a base model with prompt engineering and/or
RAG to get a baseline for performance.

Having a baseline for performance without fine-tuning is essential for knowing whether or not
fine-tuning has improved model performance. Fine-tuning with bad data makes the base model
worse, but without a baseline, it's hard to detect regressions.

You should be able to clearly articulate a specific use case for fine-tuning and identify the model
you hope to fine-tune.

You can also use a combination of optimization strategies, like RAG and a fine-tuned model,
to improve your language application.




Access to latest
information

RAG

Dynamically retrieves real-time
data from external sources.
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Fine-tuning

Requires retraining to incorporate
new information.

Response accuracy
and performance

Grounded in external documents,
works well for fact-based or
knowledge-driven queries.

Excels at context-aware responses,
specific tasks, and specialized
workflows.

Computational

Lower training costs, updates

Higher training costs but

efficiency occur at the retrieval layer. optimized inference speed.

Latenc Can introduce higher response Faster inference after fine-tuning,
y time due to retrieval steps. as no external retrieval is needed.

Cost Lower costs upfront, but Higher initial investment but

considerations

retrieval APl costs may increase
with usage.

lower long-term costs for
repetitive tasks.

Hallucination risk

(:/\

You are ready for fine-tuning if...

Reduces hallucinations by
retrieving factual data.

Can still hallucinate if fine-tuned
on incomplete or biased data.

You have experience with Prompt Engineering and RAG approaches.

You can share specific challenges and lessons learned from alternative techniques that
were attempted before fine-tuning.

You have conducted quantitative assessments of baseline performance, where possible.
You have clear examples of previous optimization attempts, detailing what was tested
and how performance was measured.

You have identified limitations of the base model, such as:

Inconsistent performance on edge cases

Insufficient context window for few-shot learning

High latency impacting real-time use cases
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Hybrid approach with RAG and fine-tuning

The hybrid approach of using RAG and fine-tuning together, often referred to as retrieval
augmented fine-tuning (RAFT), combines the strengths of both techniques to enhance the
performance of LLMs.

Why adopt a hybrid approach

Combining RAG and fine-tuning, offer a powerful synergy that addresses the limitations of
individual techniques. This involves fine-tuning a model with specific data to create a foundation of
high accuracy, which can then be supplemented with RAG's up-to-date information retrieval. The
result is highly accurate, relevant, and context-aware outputs.

Integrating RAG with fine-tuning creates a model that leverages both real-time knowledge retrieval
and deep customization, offering:

Improved accuracy and relevance — Fine-tuning personalizes responses, while RAG ensures the Al
accesses the latest information.

Reduced hallucinations — RAG reduces model-generated misinformation by grounding responses
in real-world data.

Lower computational costs — Instead of retraining a model frequently, businesses can use RAG to
inject fresh knowledge dynamically.

Better compliance and control — Fine-tuning refines model behavior, while RAG allows retrieval
from vetted, enterprise-approved data sources.

When to use a hybrid approach

A study explored the trade-offs between RAG and fine-tuning for incorporating proprietary and
domain-specific data into LLMs. Researchers developed a pipeline that extracted information from
PDFs, generated question-answer pairs for fine-tuning, and evaluated performance using GPT-4.

Their findings on an agricultural dataset demonstrated how RAG and fine-tuning can complement
each other. Fine-tuning improved accuracy by over 6 percentage points (p.p.), while RAG provided
an additional 5 p.p. increase by dynamically retrieving relevant knowledge. In a specific experiment,
the fine-tuned model improved answer similarity from 47% to 72%, leveraging knowledge across
different geographic locations.



Unlocking business value with fine-tuning 13

This study highlights that fine-tuning excels at embedding structured domain expertise into
the model, while RAG enhances adaptability by incorporating real-time, external knowledge.
Businesses can strategically combine both approaches to maximize accuracy, efficiency, and
relevance based on their industry needs.

Here's another example:

-

A customer wants an LLM model to turn natural language questions into queries in a
specific, nonstandard query language. The customer provides guidance in the prompt

(“Always return GQL") and uses RAG to retrieve the database schema. However, the syntax
isn't always correct and often fails for edge cases. The customer collects thousands of
examples of natural language questions and the equivalent queries for the database,
including cases where the model failed before. The customer then uses that data to
fine-tune the model. Combining the newly fine-tuned model with the engineered prompt
and retrieval brings the accuracy of the model outputs up to acceptable standards for use.

4 N\
Choice of techniques
(Chat-based travel agent)

Q&A
System

high

Travel

booking Combination (fine-tuning + RAG + Prompt)

Legal
documentation

Fine-tuning RLHF Custom model

low

Context optimization
(Using external knowledge)

low high

Model adaptation
(How model needs to behave)
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The fine-tuning journey

Before you start with fine-tuning

When starting out on your generative Al journey, we recommend you begin with prompt
engineering and RAG to familiarize yourself with base models and its capabilities.

As you get comfortable and begin building your solution, it's important to understand where
prompt engineering may fall short and that will help you realize if you should try fine-tuning.

 Is the base model failing on edge cases or exceptions?

« Is the base model inconsistent in producing outputs in the desired format?

« Isit difficult to fit enough examples in the context window to steer the model?
« Isthe model’s latency too high for your performance requirements?

« Is the base model becoming too expensive or inefficient due to long, complex prompts?

Examples of failure with the base model and prompt engineering can help you identify the data to
collect for fine-tuning and establish a performance baseline that you can evaluate and compare
your fine-tuned model against. Having a baseline for performance without fine-tuning is
essential for knowing whether or not fine-tuning improves model performance.




Executing your fine-tuning project

At a high level, fine tuning requires you to:

(1) Prepare and upload training data,

(2) Train a new fine-tuned model,

(3) Evaluate your newly trained model,

(4) Deploy that model for inferencing, and

(5) Use the fine-tuned model in your application
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It's important to call out that fine-tuning is heavily dependent on the quality of data that you
can provide. It's best practice to provide hundreds, if not thousands, of training examples to be
successful and get your desired results.

Pipeline for fine-tuning

.

Data preparation
Data collection and
Curation

Data cleaning and QA
Data augmentation

2/
Model initialisation

Choose pre-trained
model

Load pre-trained
model weights

2/
Training setup

Configure training
environment

Defining
hyperparameters

Initialize optimizers

W
Fine-tuning

Techniques—SFT,
RFT, DPO

Parameter efficient
fine-tuning

Task specific finetuning

Data splitting

and loss function Domain specific
# » finetuning )

=
)

Validation and evaluation
Evaluation metrics

Understanding loss curve
and noisy gradients

Hyperparameter tuning

°J
Deployment
Deployment strategies

Optimization for inference

Exporting finetuned model

Preventing overfitting I l l

v
Monitoring
Continuous monitoring

Periodic retraining and update
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Data preparation

What data are you going to use for fine-tuning?

The fine-tuning process begins by selecting a pretrained model and preparing a relevant
dataset tailored to the target task. This dataset should reflect the kind of inputs the model will
see in deployment.

For example, if the goal is to fine-tune a model for sentiment analysis, the dataset would include
labeled text examples categorized by sentiment (positive, negative, neutral).

The model is then retrained on this dataset, adjusting its parameters to better align with the new
task. This retraining process usually requires fewer computational resources compared to training
a model from scratch, as it builds upon the existing capabilities.

Even with a great use case, fine-tuning is only as good as the quality of the data that you're able
to provide. Different models will require different data volumes, but you often need to provide
fairly large quantities of high-quality curated data. Another important point is even with high
quality data if your data isn't in the necessary format for fine-tuning, you'll need to commit
engineering resources in order to properly format the data.

| =l

—

- .
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You are ready for fine-tuning if...

You have identified relevant datasets for fine-tuning.

You have formatted the dataset appropriately for training.

You have curated the dataset to ensure high quality.
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To fine-tune a model for chat or question answering, your training dataset should reflect
the types of interactions the model will handle.
Here are some key elements to include in your dataset:

« Prompts and responses: Each entry should contain a prompt (e.g., a user question) and a
corresponding response (e.g., the model’s reply).

« Contextual information: For multi-turn conversations, include previous exchanges to help the
model understand context and maintain coherence.

« Diverse examples: Cover a range of topics and scenarios to improve generalization and robustness.

« Human-generated responses: Use responses written by humans to teach the model how to
generate natural and accurate replies.

« Formatting: Use a clear structure to separate prompts and responses. For example, \n\n###\
n\n and ensure the delimiter doesn't appear in the content.

Best Practices for data preparation

The more training examples you have, the better. Fine tuning jobs will not proceed without at
least 10 training examples, but such a small number isn't enough to noticeably influence model
responses. It is best practice to provide hundreds, if not thousands, of training examples to be
successful. 100 good-quality examples are better than 1000 poor examples.

In general, doubling the dataset size can lead to a linear increase in model quality. But keep in mind,
low quality examples can negatively impact performance. If you train the model on a large amount
of internal data, without first pruning the dataset for only the highest quality examples you could
end up with a model that performs much worse than expected.

Best practices for data labelling

Accurate and consistent labelling is crucial for training the model. Follow these best practices:

« Ensure data diversity: Include all the typical variations such as document formats (digital vs.
scanned), layout differences, varying table sizes, and optional fields.

« Define fields clearly: Use semantically meaningful field names (e.g., effective_date), especially
for custom models, and follow consistent naming conventions like Pascal or camel case.

« Maintain label consistency: Ensure uniform labeling across documents, particularly for
repeated values.

« Split your data: Separate training and validation sets to evaluate the model on unseen data and
avoid overfitting.

« Label at scale: Aim for at least 50 labeled documents per class, where applicable.

« Combine automation and review: Use Al-generated labels to accelerate the process, focusing
manual effort on complex or critical fields.
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Model selection

Selecting the right model for fine-tuning is a critical decision that impacts performance,
efficiency, and cost. Before making a choice, it is essential to clearly define the task and

establish the desired performance metrics. A well-defined task ensures that the selected
model aligns with specific requirements, optimizing effort and resources.

Best practices for model selection

Choose models based on domain specificity and use case.

Start by evaluating industry-standard models for general capabilities, then assess models fine-
tuned for your specific use case. If your task requires deep domain expertise, selecting a model
tailored to your industry can improve accuracy and efficiency while reducing the need for
extensive fine-tuning.

Assess model performance on leaderboards

Review benchmark leaderboards to evaluate how pre-trained models perform on relevant tasks.
Focus on key metrics such as accuracy, coherence, latency, and domain-specific benchmarks to
identify a strong foundation for fine-tuning.

Experiment with model playgrounds

Utilize interactive testing environments to assess the base model’s performance on real-world use
cases. By adjusting prompts, temperature, and other parameters, you can identify performance
gaps before investing in fine-tuning.

Weigh trade-offs between model size, complexity, cost, and performance
Larger models may offer superior accuracy but come with higher computational costs and latency.
Consider the balance between efficiency and precision based on your deployment needs.

Training and evaluation

Fine-tuning isn’'t merely a matter of retraining on a new dataset; it also involves careful
consideration of various hyperparameters and techniques to balance accuracy and generalization.
A key risk is overfitting, where a model becomes too narrowly adapted to training data, reducing
its effectiveness on unseen inputs. To mitigate overfitting and optimize performance, fine-tuning
requires adjusting parameters such as learning rate, regularization, batch size, number of epochs,
and seed settings.
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Best practices for training
« Experiment with different hyperparameters to improve model performance.

« Consider freezing early layers responsible for general language understanding and fine-tune
only the later, task-specific layers. This preserves foundational knowledge while enabling
domain-specific adaptation.

« Align training data with real-world usage patterns. For example, if 90% of queries are about
Question A, mirror that ratio in your dataset to optimize for high-frequency scenarios while still
covering edge cases.

« Establish clear training goals and evaluation metrics to monitor fine-tuning effectiveness.

Use evaluations in fine-tuning

You should have clearly defined goals for what success with fine-tuning looks like. Ideally, these
should go beyond qualitative measures and include quantitative metrics, such as using a holdout
validation set, conducting user acceptance testing, or A/B tests comparing the fine-tuned model
to the base model.

Model training can be guided by metrics. For example, BLEU-4 was used to evaluate training when
fine-tuning a model to generate chest X-Ray reports, as seen in this paper.

4 )
oy Q
Model size trade-offs Error analysis
Compare accuracy vs. cost . Identify failure areas
< - =
O s
Hyperparameter tuning Adjust data size
Adjust epochs, learning rate, etc. BLEU changes with data/training time.
N J

Use intermediate checkpoints for better model selection. Save checkpoints at regular intervals
(e.g. every few epochs) and evaluate their performance. In some cases, an intermediate checkpoint
may outperform the final model, allowing you to select the best version rather than relying solely
on the last trained iteration.
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Deployment and monitoring

Choose a suitable deployment infrastructure, such as cloud-based platforms or
on-premises servers.

Continuously monitor the model’s performance and make necessary adjustments
to ensure optimal performance.

Consider regional deployment needs and latency requirements to meet enterprise SLAs.

Implement security guardrails, such as private links, encryption, and access controls, to
protect sensitive data and maintain compliance with organizational policies.
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Use cases
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Turning natural language into a query language is just one use-case where you can ‘show not tell’ the
model how to behave. Custom model can be built for a wide range of business use cases, including:

Business use cases

4 )
4 N N N [ )
Customer Content Document Knowledge
service generation summarization management
Generate personalized Generate high-quality Generate accurate and Help users find relevant
responses to customer content, such as concise summaries of information from large
inquiries by leveraging product descriptions, long documents by knowledge bases by
relevant product marketing copy, and leveraging external understanding their
information, customer social media posts, knowledge bases and queries and retrieving
history, and external by combining factual fine-tuned language the most relevant
knowledge bases. information with models. documents.
By quickly identifying creative writing skills. Hybrid models can Hybrid models can
root causes and By ensuring alignment extract key information, also be used to create
providing accurate with brand guidelines, making it easier for knowledge graphs that
solutions, hybrid models hybrid models help users to quickly find visualize and analyze
can enhance customer maintain consistent what they need. complex information.
satisfaction and reduce brand voice and
resolution time. messaging.
\ ) \[neeseding U\ J J
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The following industry use cases illustrate how fine-tuned Al models can address domain-specific
challenges, enhance operational efficiency, and deliver tailored value across sectors.

Diagnostic Support

Customize Al models using proprietary medical
research, clinical guidelines, and patient data.
Clinical Documentation

Fine-tune Al for medical transcription, documentation
automation, and physician assistance.

-

(
Healthcare and life sciences

J

Finance

Personalized Advisory
Automate financial insights by tailoring
recommendations based on historical and real-time data.

Strategic Alignment

Ensure Al-driven investment analysis adheres to internal
strategies and risk policies

G J

Contract Intelligence

Fine-tune Al models to generate contract summaries,
legal briefings, and compliance documents with strict
adherence to legal language.

Content Consistency

Maintain brand voice across marketing, corporate
communications, and technical documentation

Legal services

&

Agriculture

Crop Health Monitoring
Fine-tune models to analyze leaf images and sensor data
to detect diseases and recommend targeted treatments.

Farmer Advisory Support

Fine-tune Al assistants to provide tailored guidance on
best practices, government policies, and market trends,
with support for multiple languages and dialects

G J

K\
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Fine-tuning techniques

Supervised fine-tuning

Supervised fine tuning allows you to provide custom data (prompt/completion or conversational
chat, depending on the model) to teach the base model new skills. This process involves further
training the model on a high-quality labelled dataset, where each data point is associated with the
correct output or answer. The goal is to enhance the model’s performance on a particular task by
adjusting its parameters based on the labelled data.

Reinforcement fine-tuning

Reinforcement fine-tuning is a model customization technique, particularly beneficial for
optimizing model behavior in highly complex or dynamic environments, enabling the model to
learn and adapt through iterative feedback and decision-making.

For example, financial services providers can optimize the model for faster, more accurate risk
assessments or personalized investment advice. In healthcare and pharmaceuticals, 03-mini can be
tailored to accelerate drug discovery, enabling more efficient data analysis, hypothesis generation,
and identification of promising compounds.

- Reinforcement fine-tuning ~N

4 Supervised fine-tuning )
T T > >
SFT Epochs ‘ SFT Epochs ‘ SFT Epochs ‘
Base model Fine-tuning model
- // J
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Reinforcement fine-tuning
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sampling
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Direct preference optimization

Direct Preference Optimization (DPOQ) is another new alignment technique for large language
models, designed to adjust model weights based on human preferences. Unlike Reinforcement
Learning from Human Feedback (RLHF), DPO does not require fitting a reward model and uses
binary preferences for training. This method is computationally lighter and faster, making it equally
effective at alignment while being more efficient. DPO is especially useful in scenarios where
subjective elements like tone, style, or specific content preferences are important.

Why is DPO useful?

DPO is especially useful in scenarios where there's no clear-cut correct answer, and subjective
elements like tone, style, or specific content preferences are important. This approach also enables
the model to learn from both positive examples (what's considered correct or ideal) and negative
examples (what's less desired or incorrect), often leveraging “thumbs up” and “thumbs down”
feedback data to refine responses based on user preferences.

Why is direct preference optimization useful?

spicry YO —

DPO eliminates the need By directly optimizing DPO is computationally DPO directly incorporates
for a separate reward the policy based on efficient as it does not human preferences into
model, which is required human preferences, DPO require the extensive the optimization process,
in traditional methods avoids the instability computational resources which helps in reducing
like RLHF. often associated with needed for RLHF. unintended biases in the
training and maintaining model’s behavior.
This simplification reduces | | myitiple models. This efficiency allows
the complexity of the for faster convergence This alignment with
optimization process This leads to more and lower computational human values ensures
consistent and overhead that the model'’s
reliable outcomes outputs are more
desirable and ethical.
o AN /AN N\ J
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DPO is believed to be a technique that will make it easier for customers to generate high-quality
training data sets. While many customers struggle to generate sufficient large data sets for
supervised fine-tuning, they often have preference data already collected based on user logs, A/B
tests, or smaller manual annotation efforts.

Overall, DPO offers a streamlined, stable, and efficient alternative to traditional methods, making
it a promising approach for fine-tuning language models to better align with human expectations
and values.



Unlocking business value with fine-tuning 24

Model optimization using distillation

Model distillation empowers developers to use the outputs of large, complex models to fine-tune
smaller, more efficient ones. This technique allows the smaller models to perform just as well on
specific tasks, all while significantly cutting down on both cost and latency.

Distillation refers to the process of using a large, general purpose teacher model to train a smaller
student model to perform well at a specific task.

Distillation is of particular interest for several reasons:

« reduce the costs and latency
» improve performance.
« operate in resource-constrained environments

Let’s work together on a distillation user scenario: distilling from production for a news
sentiment use case.

Imagine a company using an Al-powered platform to monitor news in real-time, tracking sentiment
around its brand, products, and industry trends. Behind the scenes, the large model is analyzing
news articles to detect positive, negative, or neutral sentiment.

As the number of news sources and updates grows, so do the platform'’s operating costs and with
each new data source, processing times begin to slow. Now, imagine if the platform could maintain
this large model’s intelligence and accuracy while reducing both costs and response times.

Model distillation to the rescue! We capture model's real-time interactions with news articles,
building a rich dataset of responses. With this data, we can distil large model’s power into a smaller,
faster model that delivers high-quality answers at a fraction of the cost.
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Challenges and limitations of fine-tuning

Fine-tuning large language models scan be a powerful technique to adapt them to specific
domains and tasks. However, fine-tuning also comes with some challenges and disadvantages
that need to be considered before applying it to a real-world problem. Below are a few of these
challenges and disadvantages.

 Fine-tuning requires high-quality, sufficiently large, and representative training data matching
the target domain and task. Quality data is relevant, accurate, consistent, and diverse enough
to cover the possible scenarios and variations the model will encounter in the real world. Poor-
quality or unrepresentative data leads to over-fitting, under-fitting, or bias in the fine-tuned
model, which harms its generalization and robustness.

« Fine-tuning large language models means extra costs associated with training and hosting the
custom model.

« Formatting input/output pairs used to fine-tune a large language model can be crucial to its
performance and usability.

« Fine-tuning may need to be repeated whenever the data is updated, or when an updated base
model is released. This involves monitoring and updating regularly.

« Fine-tuning is a repetitive task (trial and error) so, the hyperparameters need to be carefully
set. Fine-tuning requires much experimentation and testing to find the best combination of
hyperparameters and settings to achieve desired performance and quality.
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Enhancing expertise with fine-tuning at Bayer

Bayer leveraged fine-tuning to enhance the accuracy and efficiency of its agronomy-focused

Al assistant, E.LY. Initially, Bayer implemented RAG on GPT-3.5 to improve responses related to
Bayer's commercial agricultural products, achieving a 42% improvement in accuracy. However, as
usage scaled, challenges emerged—slower response times, higher costs, and limited scalability.
To address this, Bayer collaborated with Microsoft to fine-tune a specialized model, focusing on
crop protection label understanding. The fine-tuning process involved continual pre-training,
supervised fine-tuning, and direct preference optimization, supported by real-world prompt
templates, training sets, and proprietary QA benchmarks. By integrating domain expertise and
optimizing model adaptation, Bayer significantly improved response precision, reduced latency,
and ensured the model could handle complex agronomic queries, including unit conversions and
application rates, ultimately delivering a faster, and effective solution.

So how did Bayer work with Microsoft to evolve E.L.Y. and focus this model on crop protection...

4 N 4 N 4 N
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Al search index

Table summarization

Model adaptation

Crop protection labels . .
QnA generation Continual pre-training
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Phi-3 : Fine-tuning for Bayer Crop protection labels

The ability to fine-tune a foundational model in a cost-efficient manner provided tremendous gains
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Best practices fol

Here are some best practices that can help improve the efficienc
tuning LLMs for various applications:

“Paris##\n", "completion”: ” city\n###\n"}. Be sure

Collect a large, high-quality dataset: LLMs are data-hungry and can ben

more diverse and representative data to fine-tune on. However, collec
large datasets can be costly and time-consuming. Therefore, you can.
generation techniques to increase the size and variety of your datas
also ensure that the synthetic data is relevant and consistent with your t
ensure that it does not introduce noise or bias to the model.

Try fine-tuning subsets first: To assess the value of getting more data, you can
models on subsets of your current dataset to see how performance scales with dz
This fine-tuning can help you estimate the learning curve of your model and decide \
adding more data is worth the effort and cost. You can also compare the performance o
your model with the pre-trained model or a baseline. This comparison shows how much
improvement you can achieve with fine-tuning.

Experiment with hyperparameters: Iteratively adjust hyperparameters to optimize the

model performance. Hyperparameters, such as the learning rate, the batch size and the '
number of epochs, can have significant effect on the model's performance. Therefore, you e
should experiment with different values and combinations of hyperparameters to find the
best ones for your task and dataset.

Start with a smaller model: A common mistake is assuming that your application needs
the newest, biggest, most expensive model. Especially for simpler tasks, start with smaller
models and only try larger models if needed.

Select models based on domain needs: Start with industry-standard models before

considering fine-tuned versions for specific use cases. Use benchmark leaderboards
to assess performance and test real-world scenarios in model playgrounds. Balance

accuracy, cost, and efficiency to ensure the best fit for your deployment
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Fine-tuning with
Microsoft Foundry

As enterprises increasingly adopt generative Al for domain-specific tasks, the ability to tailor
foundational models to unique datasets becomes critical. Foundry enables organizations to fine-
tune large language and multimodal models with precision, scalability, and enterprise-grade security,
bridging the gap between general-purpose Al and specialized business needs.

Foundry supports the fine-tuning of variety of pre-trained models, including Azure OpenAl
models, lightweight Phi family and third-party models, offering flexibility across use cases.
It provides a streamlined fine-tuning workflow that can be executed with minimal configuration.

Types of fine-tuning

Foundry supports a range of fine-tuning methods: supervised fine tuning (SFT),
direct preference optimization (DPO) and Reinforcement Fine-tuning (RFT).

Supervised Fine-tuning trains a model using prompt-response pairs, demonstrating the desired
way it should respond to specific inputs. This method helps customize the model to align with
your unique use case. Foundry offers SFT for third-party models as well, enabling greater flexibility
in customizing models to specific business needs.

Preference Fine-uning goes a step further by optimizing the model based on human preferences.
By training with ranked response examples, DPO helps refine outputs to better match
user expectations.

Reinforcement Fine-tuning enables customization of models using dozens to thousands
of high-quality tasks. By grading the model’s responses with provided reference answers,
this technique reinforces how the model reasons through similar problems and improves
its accuracy on specific tasks in that domain.

These techniques can be combined for greater customization. Start with SFT to build a model
tailored to your tasks, ensuring high-quality and representative data. Then, apply DPO to
fine-tune responses through comparative adjustments, aligning them even more closely with
user preferences.
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Model Distillation in Foundry
Foundry provides support for distillation, allowing you to efficiently train student models.
The key steps in knowledge distillation include:

1. Use the pretrained teacher model to produce outputs (soft labels or logits) for the original dataset.

2. Leverage the teacher’s predictions, alongside the original dataset, to guide the student model in
learning to replicate the teacher’s behavior more efficiently.

Model distillation is supported for both Azure OpenAl Service models and select open source third
party models available in the model catalog.

Azure OpenAl Service enables efficient model distillation by leveraging Stored Completions,
Evaluation, and Fine-Tuning to optimize models for specific use cases.

Distillation

I. Real traffic N
©
Collect live traffic (o Fine-tuning
— B —
Production model == Captured data Smaller model Distilled model
(Teacher model) - (Student model) )
-'Iodel generated y ™
‘ @
3 Fine-tuning r Fine-tuning
- — 7] B —
Seed Larger model Synthetic data Smaller model Distilled model
Knowledge (Teacher model) (Student model)
- -

With Stored Completions, users can capture input-output pairs from models like GPT-40, creating
high-quality datasets based on real production data. These datasets can then be used for both

evaluation and fine-tuning.

Azure OpenAl Evaluation provides a streamlined framework to assess model performance, utilizing
Stored Completions or existing datasets to measure effectiveness across specific tasks.
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Finally, these insights seamlessly integrate into the fine-tuning process, ensuring that models are
continuously refined and optimized based on real-world usage, improving accuracy, efficiency, and
task-specific performance.

Continual fine-tuning

Update a fine-tuned model with new data or continue from where you left off. Keep most
parameters the same, but consider reducing the learning rate.

Vision fine-tuning

Fine-tuning GPT-40 with vision capabilities is streamlined, allowing training with diverse image data,
including graphs and charts. The input format remains consistent as JSONL, ensuring seamless
integration. Additionally, there is no charge for rejected jobs, with helpful guidance provided on
how to resolve issues for successful training.

Azure ensures responsible Al practices by automatically filtering out faces, captchas, and abusive
content from training datasets, preventing these data rows from being used in model training.

Built in safety

Azure provides strong defences through Prompt Shields, jailbreak risk detection, and
comprehensive safety evaluations. Automatic safety assessments include sampling training data
for harmful content and running simulated adversarial conversations with fine-tuned models.
Ensuring privacy and security, evaluations are conducted in dedicated, customer-specific private
workspaces, with endpoints located in the same geography as the Azure resource.

Fine-tuning remains a critical capability for adapting foundation models to domain-specific tasks,
enhancing accuracy, and reducing latency in production scenarios. By applying best practices,
such as selecting the appropriate fine-tuning method, leveraging high-quality domain data, and
using evaluation loops to validate performance, organizations can accelerate time to value while
maintaining model integrity.

Foundry simplifies this process through an integrated platform that offers support for multiple
fine-tuning techniques, seamless access to Microsoft and open-source models, and built-in tools for

model monitoring, deployment, and governance. Together, these features enable enterprise teams
to efficiently operationalize Al while aligning with strategic business goals.

Begin your journey with Foundry = Microsoft Azure
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